Кархезиум

ЦарствоЖивотные
ПодцарствоОдноклеточные
ТипИнфузории

Среда обитания, строение и передвижение

Инфузория-туфелька обитает в мелких стоячих водоёмах. Это одноклеточное животное длиной 0,5 мм имеет веретеновидную форму тела, отдалённо напоминающую туфлю. Инфузории все время находятся в движении, плавая тупым концом вперёд. Скорость передвижения этого животного достигает 2,5 мм в секунду. На поверхности тела у них имеются органоиды движения — реснички. В клетке два ядра: большое ядро отвечает за питание, дыхание, движение, обмен веществ; малое ядро участвует в половом процессе.

Строение инфузории туфельки

Организм инфузории устроен сложнее. Тонкая эластичная оболочка, покрывающая инфузорию снаружи, сохраняет постоянную форму её тела. Этому же способствуют хорошо развитые опорные волоконца, которые находятся в прилегающем к оболочке слое цитоплазме. На поверхности тела инфузории расположено около 15 000 колеблющихся ресничек. У основания каждой реснички лежит базальное тельце. Движение каждой реснички состоит из резкого взмаха в одном направлении и более медленного, плавного возвращения к исходному положению. Реснички колеблются примерно 30 раз в секунду и, словно вёсла, толкают инфузорию вперёд. Волнообразное движение ресничек при этом согласованно. Когда инфузория-туфелька плывёт, она медленно вращается вокруг продольной оси тела.

Процессы жизнедеятельности

Питание

Туфелька и некоторые другие свободно живущие инфузории питаются бактериями и водорослями.

Реакция инфузории-туфельки на пищу

Тонкая эластичная оболочка, (клеточная мембрана) покрывающая инфузорию снаружи, сохраняет постоянную форму тела. На поверхности тела расположено около 15 тысяч ресничек. На теле имеется углубление — клеточный рот, который переходит в клеточную глотку. На дне глотки пища попадает в пищеварительную вакуоль. В пищеварительной вакуоле пища переваривается в течение часа, вначале при кислой, а затем при щелочной реакции. Пищеварительные вакуоли перемещаются в теле инфузории током цитоплазмы. Не переваренные остатки выбрасываются наружу в заднем конце тела через особую структуру — порошицу, расположенную позади ротового отверстия.

Дыхание

Дыхание происходит через покровы тела. Кислород поступает в цитоплазму через всю поверхность тела и окисляет сложные органические вещества, в результате чего они превращаются в воду, углекислый газ и некоторые другие соединения. При этом освобождается энергия, которая необходима для жизни животного. Углекислый газ в процессе дыхания удаляется через всю поверхность тела.

Выделение

В организме инфузории-туфельки находятся две сократительные вакуоли, которые располагаются у переднего и заднего концов тела. В них собирается вода с растворёнными веществами, образующимися при окислении сложных органических веществ. Достигнув предельной величины, сократительные вакуоли подходят к поверхности тела, и их содержимое изливается наружу. У пресноводных одноклеточных животных через сократительные вакуоли удаляется избыток воды, постоянно поступающей в их тело из окружающей среды.

Раздражимость

Инфузории-туфельки собираются к скоплениями бактерий в ответ на действие выделяемых ими веществ, но уплывают от такого раздражителя, как поваренная соль.

Раздражимость — свойство всех живых организмов отвечать на действия раздражителей — света, тепла, влаги, химических веществ, механических воздействий. Благодаря раздражимости одноклеточные животные избегают неблагоприятных условий, находят пищу, особей своего года.

Размножение

Бесполое

Инфузория обычно размножается бесполым путём — делением надвое. Ядра делятся на две части, и в каждой новой инфузории оказывается по одному большому и по одному малому ядру. Каждая из двух дочерних получает часть органоидов, а другие образуются заново.

Половое

При недостатке пищи или изменении температуры инфузории переходят к половому размножению, а затем могут превратиться в цисту.

При половом процессе увеличения числа особей не происходит. Две инфузории временно соединяются друг с другом. На месте соприкосновения оболочка растворяется, и между животными образуется соединительный мостик. Большое ядро каждой инфузории исчезает. Малое ядро дважды делится. В каждой инфузории образуются четыре дочерних ядра. Три из них разрушаются, а четвёртое снова делится. В результате в каждой остаётся по два ядра. По цитоплазматическому мостику происходит обмен ядрами, и там сливается с оставшимся ядром. Вновь образовавшиеся ядра формируют большое и малое ядра, и инфузории расходятся. Такой половой процесс называется конъюгацией. Он длится около 12 часов. Половой процесс ведёт к обновлению, обмену между особями и перераспределению наследственного (генетического) материала, что увеличивает жизнестойкость организмов.

Ресничные инфузории — наиболее сложноорганизованный, развитый класс простейших. Среди инфузорий можно встретить как свободноживущие (в морских и пресных водах), прикрепленные формы, так и паразитические — балантидий. Представители свободноживущих форм: инфузория-туфелька, инфузория-трубач.

Инфузория-туфелька

Инфузория-туфелька — вид инфузорий, который получил свое названия благодаря форме тела (клетки) в виде туфельки. Это связано с наличием у клетки плотной наружной оболочки — пелликулы. Излюбленное место обитания — пресные водоемы со стоячей водой, ее легко можно обнаружить и в обычном аквариуме, взяв пробу воды на микроскопию.

  • Органоиды движения

Органы движения у инфузории — реснички, которые покрывают тело полностью или частично. Совершая ими волнообразные движения, инфузория начинает вращаться и подобно винту вкручивается в толщу воду (штопорообразное движение).

За счет наличия плотной пелликулы, у инфузории имеется достаточно сложноустроенная пищеварительная система — по сравнению с амебой, у которой нет плотной оболочки, а вещества могут захватываться и выделяться в любом участке поверхности клетки. У инфузории такого хаоса, как у амебы, нет — для всего отведено свое место.

Ближе к переднему концу тела на поверхности инфузории имеется углубление — клеточный рот, также называемый цитостома (др.-греч. κύτος «вместилище» и στόμα — «рот»), служит местом поступления твердых пищевых частиц, бактерий.

Сужаясь, клеточный рот переходит в клеточную глотку (цитофаринкс — от греч. kytos – вместилище, клетка и pharyngos – глотка). На дне глотки пищевые частицы попадают в пищеварительные вакуоли (фагосомы), в которых благодаря ферментам перевариваются. Расщепленные пищевые частицы поступают в цитоплазму и используются клеткой для своих нужд.

Непереваренные остатки пищи удаляются с помощью экзоцитоза в специально отведенном месте, где прерывается пелликула — порошица (цитопиг).

Дыхательная система отсутствует, поэтому дыхание (поглощение кислорода и выделение углекислого газа) у инфузории-туфельки осуществляется диффузно всей поверхностью клетки. При низкой концентрации кислорода в воде, инфузория способна существовать за счет гликолиза (от греч. glykys-сладкий и lysis — разложение) — бескислородного расщепления глюкозы.

Продукты азотистого обмена удаляются с помощью сократительных вакуолей. Этим же вакуолям принадлежит крайне важная функция: регуляция осмотического давления клетки — поддержание гомеостаза. В процессе работы сократительной вакуоли из клетки удаляется избыток воды, что препятствует разрыву клетки.

Если бы не сократительные вакуоли, удаляющие избыток воды, клетка лопнула, как переполненный воздушный шарик.

Эта тема заслуживает нашего особенного, пристального внимания. У инфузории-туфельки имеются два ядра: большое — вегетативное (макронуклеус), которое отвечает за процессы жизнедеятельности в клетке, и малое — генеративное (микронуклеус), основная функция которого заключается в процессе размножения клетки.

Для инфузорий характерно бесполое размножение, путем поперечного деления надвое. Заметьте, именно — поперечного, а не продольного, которое присуще эвглене зеленой. Под действием неблагоприятных факторов у инфузорий запускается механизм полового размножения по типу конъюгации.

При конъюгации две инфузории соединяются в области клеточных ртов (цитостомы), между ними возникает цитоплазматический мостик. Вегетативное ядро (полиплоидное) каждой клетки растворяется, а генеративное (2n) мейотически делится, в результате образуется 4 ядра (n), 3 из которых растворяются, а одно оставшееся (n) делится митотически на мужское (n) и женское (n) ядро.

Женское ядро каждой инфузории остается на месте, а мужское (n) по цитоплазматическому мостику перемещается в клетку партнера, где сливается с женским (n) ядром клетки-партнера.

В результате в каждой клетке сливается женское ядро (которое никуда не перемещалось) с мужским ядром клетки-партнера, переместившимся по цитоплазматическому мостику. При слиянии образуется синкарион.

Это и есть половой процесс у инфузорий, в результате него происходит обмен генетической информацией между клетками.

Балантидий

Балантидий — вид инфузорий, являющийся самым крупным из патогенных кишечных простейших. Возбудитель балантидиаза. Форма клеток яйцевидная, покрыты ресничками. Ядерный аппарат типичен для инфузорий, состоит из вегетативного и генеративного ядер.

Паразитирует балантидий в толстой кишке, клинически заболевание протекает по типу колита (от греч. kolon — толстая кишка) — воспаления толстой кишки, и энтерита (от греч. enteron — кишка) — воспаления тонкой кишки.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Как известно, биологический метод очистки стоков является одним из самых эффективных. В основе данного способа лежат процессы жизнедеятельности микроорганизмов (так называемого «активного ила»), с помощью которых и осуществляется очищение жидкости. Таким образом, активный ил для очистки сточных вод является неотъемлемой частью процесса биологического очищения.

Что это такое?

Активный ил представляет собой комплекс бактерий, необходимых для биологического очищения стоков в специализированных очистных сооружениях.

Активному илу свойственно перманентное увеличение численности микроорганизмов, что не всегда необходимо и может проявляться нестабильным соотношением массы бактерий и поступающих сточных вод.

Принцип работы и что нужно знать

Активный ил формируется коллоидными, взвешенными и растворенными веществами, а также скоростью и качеством процессов окисления.

В то же время процесс окисления зависит от таких факторов, как:

  • концентрация микроорганизмов;
  • температурные условия;
  • продолжительность аэрации;
  • интенсивность насыщения стоков кислородом.

Так как вместе со стоками в емкость попадает питательная для микроорганизмов среда, необходимо контролировать концентрацию загрязнений сточных вод. В противном случае может наблюдаться вспухание или отмирание культур, входящих в состав активного ила.

Возраст

Возрастом активного ила является средняя продолжительность нахождения микроорганизмов в очистном сооружении, которое регулирует соотношение отводимой массы и возвращаемого вещества из вторичных отстойников.

В теории активный ил представляет собой самовоспроизводимую колонию бактерий, однако на практике обновлять комплекс микроорганизмов приходится каждые 5-6 лет.

Состав

Состав активного ила напрямую зависит от концентрации и качества стоков, поступаемых в аэротенк. Компонентами активного ила могут являться:

  • простейшие микроорганизмы;
  • амебы;
  • бактерии;
  • актиномицеты (грибы);
  • инфузории;
  • черви;
  • коловратки.

Бактерии активного ила

При аэробном очищении стоков протекают два основных микробиологических процесса: окисление органического углерода и нитрификация при участии нитчатых, флокулообразующих микроорганизмов и бактерий-нитрификаторов.

Флокулообразующие бактерии отвечают за окисление органических соединений. В их число входят микроорганизмы такого рода, как:

  • Actinomyces;
  • Atcaligenes;
  • Bacillus;
  • Cellulomonas;
  • Desulfotomaculum;
  • Flavobacterium;
  • Mycobacterium;
  • Nocardia;
  • Pseudomonas;
  • Sarcina и другие.

Наиболее многочисленными (до 80 процентов от всего комплекса микроорганизмов) бактериями являются микроорганизмы рода Pseudomonas, способные окислять:

  • спирты;
  • парафины;
  • жирные кислоты;
  • углеводы;
  • ароматические углеводороды.

Микроорганизмы рода Brevibacterium отвечают за окисление:

Окисление алифатических углеводородов происходит за счет бактерий рода Bacillus, углеводородов различных групп –Mycobacterium, а целлюлозы – бактерий рода Cellulomonas.

Палочковидные бактерии рода Zoogloea ramigera выполняют функцию образования полисахаридов хлопьев активного ила.

Углеродоокисляющие нитчатые микроорганизмы представлены:

Нитчатые бактерии отвечают за окисление многочисленных органических соединений и образование каркаса, вокруг которого формируются флоккулы. В то же время эти микроорганизмы являются основной причиной плохого осаждения ила в отстойнике и образования устойчивой пены в устройстве.

При очищении стоков с большим содержанием углеводов и дефицитом азота порой наблюдается интенсивное развитие гетероферментативных молочнокислых бактерий рода Leuconostoc, которые образуют мощную декстрановую капсулу, затрудняющую осаждение ила во вторичном отстойнике.

При недостаточном уровне аэрации развиваются анаэробные процессы с участием микроорганизмов, осуществляющих маслянокислое брожение, сульфатредукцию, денитрификацию и тому подобное.

Денитрификация во вторичных отстойниках приводит к формированию пузырьков азота, что затрудняет устранение ила из сточных вод на выходе из устройства.

Важно: Наиболее активно процессы нитрификации протекают после окисления органической составляющей.

В сточных водах с содержанием серы в активном иле развиваются сульфатредукторы, тионовые и серобактерии (наиболее часто встречаются бактерии рода Thiobacillus). Тионовые микроорганизмы развиваются при условии содержания в стоках восстановленных соединений серы.

При высоком содержании соединений железа в активном иле развиваются микроорганизмы, окисляющие Fe2 (например, рода Ferrobacillus).

Литические микроорганизмы и бактерии-паразиты рода Bdellovibrio присоединяются к клеткам других бактерий, проникают в них и размножаются, что приводит к лизису. Литические микроорганизмы разрушают клетки других бактерий за счет воздействия выделяемых ими литических ферментов.

Из внеклеточных ферментов в активном иле содержатся:

Биомасса активного ила, участвующего в анаэробном разложении, состоит из двух основных групп бактерий:

Первая группа микроорганизмов в качестве питательной среды использует исходную сложную органику, окисляя ее в процессе собственного метаболизма.

Разнообразие видов кислотообразующих микроорганизмов обеспечивает первоначальный гидролиз протеинов, углеводов и липидов до составляющих их аминокислот, сахаров и кислот. В зависимости от преобладания конкретного класса сложной органики, происходит развитие микроорганизмов определенного типа.

Наиболее активное участие в первичном брожении принимают клостридии – микроорганизмы, перерабатывающие все сложные органические соединения. При этом одни их подвиды перерабатывают только протеины, другие – окисляют целлюлозу и другие углеводные вещества, а третьи занимаются разложением жиров.

Данный тип бактерий относится к гидролитикам, так как способствует прохождению основной стадии гидролиза сложной органики.

Вторая группа бактерий обеспечивает сбраживание аминокислот, жирных кислот и сахаров до спиртов и сложных органических кислот, которые также являются промежуточными продуктами в стадии разложения.

Ацетогенные микроорганизмы в результате процессов жинедеятельности продолжают окисление до уксусной кислоты, что влечет за собой выделение молекулярного водорода.

Благодаря разнообразию видов кислотообразующих микроорганизмов жизнедеятельность биоценоза анаэробного ила довольна устойчива к изменению кислотности окружающей среды. В то же время слишком высокое содержание органических кислот способно подавить стадию ацетогенеза — разложение до уксусной кислоты.

Группа метаногенных бактерий именуется по конечному продукту процессов жизнедеятельности – метану.

В большинстве своем группа бактерий представлена метановыми археями нескольких видов, которые в качестве питательной среды используют продукты жизнедеятельности кислотообразующих бактерий.

Образование метана происходит с использованием двух возможных механизмов. При реакции первого типа микроорганизмы окисляют метиловый спирт и уксусную кислоту, выделяя при этом метан и углекислый газ. Реакции второго типа свойственно участие бактерий, использующих выделяющийся в реакциях первого типа углекислый газ, а также водород, образующийся при распаде карбоновых кислот и сложных спиртов. Оба процесса протекают одновременно, в результате чего образуется смесь газов, состоящая на 70 процентов из метана и на 30 – из диоксида углерода.

При большом содержании ионов водорода метаногенные бактерии погибают, в результате чего процесс разложения приостанавливается на стадии накопления жирных кислот, что впоследствии приводит к полному его прекращению.

Если в септике пропал активный ил

Чаще всего выращивание комплекса бактерий осуществляется в аэротенке в теплое время года. Для этого необходимо в емкость налить воду, прошедшую через очистку первой отстойной камеры в количестве до половины от всего объема. Затем вода должна пройти процедуру аэрации и смешаться с массой микроорганизмов. Для постоянного увеличения численности бактерий необходимо регулярно доливать в септик осветленную воду.

Кроме того, проблему могут помочь решить биопрепараты, применение которых позволяет заселить в очистное сооружение колонию необходимых микроорганизмов.

Регенерация

Основная масса комплекса микроорганизмов, отстаивающегося во вторичном отстойнике, должна перекачиваться снова в аэротенк. Ил, попадающий в аэротенк через регенератор, называется циркуляционным. Как показывает практика, во вторичном отстойнике ила собирается больше, чем необходимо для циркуляции, поэтому избыток активного ила утилизируется.

Система регенерации основывается на том, что из общего процесса окисления загрязнений на стадии регенерации выделяются самостоятельные стадии:

  • изъятия сложноокисляемой органики, сорбированной на иле, и полного удаления нерастворенных примесей;
  • активного образования полисахаридного геля.

Важно: Регенератор может быть отдельно стоящим или занимать от одного до трех коридоров аэротенка.

Процент регенерации зависит от объема аэротенков, выделенных под данный процесс. К примеру, если в трехкоридорном устройстве под регенератор выделен лишь один коридор, то система функционирует в условиях 33 процентов регенерации ила.

На современных сооружения биологической очистки вод с высоким содержанием промышленных примесей необходимо выделение под регенераторы как минимум половины общего объема аэротенков.

Применение регенераторов приводит к повышению производительности аэротенков за счет следующих факторов:

  • доза активного ила в регенераторе в 2-3 раза превышает долю ила в аротенке, за счет чего процесс окисления идет с большей интенсивностью;
  • увеличивается число активно функционирующих микроорганизмов, подавленных в аэротенках неблагоприятным воздействием сточных вод;
  • улушаются седиментационные показатели ила за счет снижения удельной нагрузки на ил и улучшения свойств гелеобразующей микрофлоры, флокулообразования и вытеснения нитчатых бактерий;
  • повышенная подача воздуха улучшает перемешивание активного ила и его оснащение кислородом;
  • общая масса и возраст ила в системе с регенератором больше, вследствие чего возможна нитрификация и повышенная устойчивость ила к аварийному сбросу.

Важно: В системах, оснащенными регенераторами, наблюдается уменьшение прироста или и улучшение его влагоотдающих свойств, что имеет существенное значение на стадии удаления избыточного ила.

Для полноценной регенерации активного ила необходимо соблюдение трех основных условий, согласно которым в регенератор:

  • не должны попадать осветленные сточные воды;
  • должен поступать возвратный ил;
  • должно подаваться вдвое больше воздуха, чем в другие коридоры аэротенков.

Также на полноценность процессов регенерации большое влияние оказывает своевременное удаление избыточного активного ила из вторичного отстойника.

Очистка сточных вод с помощью активного ила

Очищение сточных вод с помощью активного ила представляет собой процесс, основанный на способности бактерий использовать загрязнения в качестве питательной среды.

В настоящее время наиболее востребованными в плане очищения сточных вод являются аэробные способы очищения (при участии кислорода). Анаэробные процессы (в условиях дефицита кислорода) распространены менее широко.

Аэробная очистка сточных вод состоит из нескольких стадий:

  • массопередачи кислорода и загрязнений к поверхности активного ила;
  • сорбции загрязнений активным илом;
  • ферментативного гидролиза большинства исходных загрязнений;
  • переноса веществ внутрь клетки;
  • внутриклеточного биохимического окисления загрязнений.

Процесс анаэробного очищения состоит из следующих этапов:

  • трансформация органики в мономерные соединения;
  • переход мономеров в форму короткоцепочных кислот;
  • окисление кислот до состояния уксусной кислоты;
  • образование метана и углекислого газа.

Преимущества и недостатки

Основными преимуществами очистки сточных вод с помощью активного ила является:

  • низкая расчетная стоимость очистки одной единицы стоков;
  • надежность;
  • отсутствие необходимости в регулярной закупке расходных материалов;
  • экологичность;
  • высокая степень очищения (до 99 процентов).

Один кубический метр готового активного ила стоит около 10-13 тысяч рублей. Бактерии для формирования активного ила стоят значительно дешевле – в среднем около одной тысячи рублей за 500 граммов вещества.

Где купить активный ил для очистки сточных вод?

В Москве

Биопрепараты для формирования активного ила можно приобрести в таких компаниях, как:

  • ООО «СитиСтрой»: город Москва, Дмитровское шоссе, дом 157, офис 92133;
  • ООО «ВодаСтокСервис» Московская область, город Лыткарино, промзона Тураево, строение 10;
  • ООО «БИИКС»: город Москва, улица Поклонная, дом 4.

В СПб

Активный ил в готовом виде в Санкт-Петербурге и области поставляет компания «Инжиконстрой», офис которой располагается по адресу: город Санкт-Петербург, Новоколомяжский проспект, дом 15, литер А, помещение 5-Н.

В то же время приобрести препараты для формирования активного ила можно в компаниях:

  • ООО «Сити-Строй»: город Санкт-Петербург, улица Чайковского, дом 21;
  • ООО «Лос24»: город Санкт-Петербург, Приморское шоссе, дом 140, литер К.

Таким образом, активный ил играет большую роль в очищении стоков от органических примесей и позволяет добиться высокой степени очистки стоков — до 99 процентов.

Оцените статью
Вопросы
Добавить комментарий