No Image

Эритропоэз схема

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Эритропоэз (от греч. «erythro — «красный», и греч. poiesis — «делать») — это одна из разновидностей процесса гемопоэза (кроветворения), в ходе которой образуются красные кровяные клетки (эритроциты). Эритропоэз стимулируется уменьшением доставки кислорода к тканям, которое детектируется почками. Почки в ответ на тканевую гипоксию или ишемию выделяют гормон эритропоэтин, который стимулирует эритропоэз [2] . Этот гормон стимулирует пролиферацию и дифференциацию клеток-предшественников красного кровяного ростка, приводя тем самым к ускоренному эритропоэзу в кроветворных тканях и к увеличению выхода эритроцитов в кровь [2] . У птиц и млекопитающих (включая человека) после рождения гемопоэз — и в том числе эритропоэз — осуществляется в костном мозге, который и является единственной кроветворной тканью в норме после рождения [2] . У ранних эмбрионов и плодов гемопоэз происходит в мезодермальных клетках желточного мешка. Начиная с третьего месяца беременности, у человека гемопоэз (и в частности эритропоэз) начинает происходить в фетальной печени и фетальной селезёнке [3] . После 7-го месяца беременности гемопоэз у плода происходит преимущественно в костном мозге. Повышение физической активности (то есть повышение потребности тканей в кислороде), а также кровопотеря, курение (то есть пониженная доставка кислорода тканям из-за хронического воздействия угарного газа), пребывание в горах (то есть в местности с пониженным парциальным давлением кислорода), некоторые сердечно-сосудистые заболевания (например, сердечная недостаточность) и лёгочные заболевания (например, хроническая бронхообструктивная болезнь), приводящие к нарушению доставки кислорода тканям, могут способствовать усилению эритропоэза. Напротив, при почечной недостаточности с нарушением выработки эритропоэтина, при дефиците белков, витамина B12 или фолиевой кислоты, железа и других нутриентов, при хронических инфекциях, при злокачественных опухолях, при ряде интоксикаций, при ряде заболеваний костного мозга (например, таких, как миелодиспластический синдром или лейкоз) — наблюдается нарушение или угнетение эритропоэза, приводящее к снижению уровня гемоглобина и эритроцитов — к развитию анемии [4] . У людей с некоторыми заболеваниями и у некоторых видов животных при некоторых обстоятельствах гемопоэз, и в том числе эритропоэз, может также происходить и вне пределов костного мозга, в печени и/или селезёнке. Это называется «экстрамедуллярный (внекостномозговой) гемопоэз».

Костный мозг практически всех костей тела человека участвует в выработке клеток крови (гемопоэзе) приблизительно до 5 лет. Кости бедёр и голеней прекращают вносить существенный вклад в гемопоэз приблизительно к 25 годам. Костный мозг, расположенный в костях позвонков, грудины, таза и рёбер, а также кости черепа продолжают вносить вклад в гемопоэз в течение всей жизни человека.

Содержание

Дифференциация эритроцитов [ править | править код ]

В процессе созревания эритроцитов клетка кровяного ростка в костном мозгу проходит несколько последовательных стадий деления и созревания (дифференциации), а именно:

  1. Гемангиобласт, первичная стволовая клетка — общий прародитель клеток эндотелия сосудов и кроветворных клеток, превращается в
  2. Гемоцитобласт, или плюрипотентную гемопоэтическую стволовую клетку, превращается в
  3. CFU-GEMM, или общего миелоидного предшественника — мультипотентную гемопоэтическую клетку, а затем в
  4. CFU-E, унипотентную гемопоэтическую клетку, полностью коммиттированную в эритроидную линию, а затем в
  5. пронормобласт, также называемый проэритробластом или рубрибластом, а затем в
  6. Базофильный или ранний нормобласт, называемый также базофильным или ранним эритробластом или прорубрицитом, а затем в
  7. Полихроматофильный или промежуточный нормобласт/эритробласт, или рубрицит, а затем в
  8. Ортохроматический или поздний нормобласт/эритробласт, или метарубрицит. В конце этой стадии клетка избавляется от ядра, прежде чем стать
  9. Ретикулоцитом, или «юным» эритроцитом.

После завершения 8-й стадии получившиеся клетки — то есть ретикулоциты — выходят из костного мозга в общее кровеносное русло. Таким образом, среди циркулирующих красных кровяных клеток около 1 % составляют ретикулоциты. После 1—2 дней пребывания в системном кровотоке ретикулоциты заканчивают созревание и становятся, наконец, зрелыми эритроцитами.

Все эти стадии развития сопровождаются соответствующими морфологическими изменениями внешнего вида клетки при окраске по Райту и рассмотрении в световой микроскоп, а также определёнными биохимическими и иммунофенотипическими изменениями.

В частности, в процессе созревания базофильный пронормобласт, крупная клетка с огромным ядром, имеющая объём в среднем 900 фемтолитров, превращается в безъядерный диск объёмом в 10 раз меньше — в среднем приблизительно 95 фемтолитров. На стадии ретикулоцита клетка уже избавилась от ядра, но всё ещё способна накапливать и производить дополнительный гемоглобин, поскольку имеет «оборудование» для производства белка — рибосомы. Зрелые же эритроциты лишены не только ядра, но и рибосом, и поэтому нового гемоглобина не накапливают, а лишь транспортируют и используют уже имеющийся в течение отведённого им срока жизни. По этой же причине зрелые эритроциты, в отличие от ретикулоцитов, лишены поверхностных рецепторов к трансферрину (то есть не способны более захватывать и усваивать дополнительное железо).

Критически необходимым для созревания красных кровяных клеток (эритроцитов) является достаточное поступление витамина B12 (кобаламина) и фолиевой кислоты, а также витамина B6 (пиридоксина) и витамина B2 (рибофлавина), особенно первых двух. Дефицит любого из них вызывает нарушение процессов созревания эритроцитов, что клинически проявляется анемией (снижением содержания в крови эритроцитов и гемоглобина), макроцитозом (аномально крупными размерами эритроцитов), мегалобластозом костного мозга или, иначе говоря, мегалобластным типом кроветворения (аномально крупными размерами проэритробластов и эритробластов, называемых в этом случае соответственно промегалобластами и мегалобластами) и ретикулоцитопенией (аномально низким количеством ретикулоцитов в крови). При этом каждый отдельный эритроцит не только крупнее обычного, но и — компенсаторно — обычно содержит гемоглобина больше, чем в норме. Цветной показатель крови при этом может быть больше единицы («гиперхромная анемия») или нормален («нормохромная анемия»), но самих эритроцитов образуется меньше, чем нужно, поскольку витамин B12 и фолиевая кислота критически необходимы для деления клеток-предшественников эритроцитарного ростка. Это называется мегалобластной анемией.

Для синтеза гемоглобина клеткам-предшественникам эритроцитов необходимо железо. Дефицит железа вызывает снижение как общего содержания гемоглобина в крови, так и его содержания в каждом отдельном эритроците (то есть, в противоположность предыдущему случаю, гемоглобина в каждом отдельном эритроците не больше, а меньше нормы), а также может вызывать уменьшение размеров эритроцитов («микроцитоз», «микроцитарная анемия»). Либо же размеры эритроцитов не изменяются, но количество гемоглобина в них ниже нормы («нормоцитарная» гипохромная анемия, то есть с обычных размеров, но более бледными эритроцитами). Может также наблюдаться некоторое (меньшее, чем при дефиците витамина B12 или фолиевой кислоты) уменьшение количества эритроцитов. Цветной показатель крови при этом либо нормален и не изменен («нормохромная анемия»), либо снижен («гипохромная анемия»). И опять-таки отмечается аномально низкое количество ретикулоцитов в крови — ретикулоцитопения.

После кровопотери или при гипоксии (например, при подъёме в горы или переезде в горную местность или развитии легочного либо сердечно-сосудистого заболевания с гипоксией), или при стимулировании эритроцитарного ростка костного мозга экзогенно введённым эритропоэтином, или в фазе восстановления после химиотерапии, или при назначении больному с дефицитом B12, фолиевой кислоты или железа препаратов, компенсирующих эти дефициты, напротив, количество ретикулоцитов в крови временно возрастает — развивается ретикулоцитоз, который служит признаком усиления эритропоэза. Ретикулоцитоз при этом сохраняется до компенсации анемии (восстановления нормального уровня гемоглобина и эритроцитов) и устранения причины анемии.

Читайте также:  Доклад про белого тигра

Изменения характеристик клеток-предшественников эритроцитов в процессе эритропоэза [ править | править код ]

В процессе созревания клеток эритроцитарного ростка изменяется их ряд морфологических характеристик. В частности:

  1. Уменьшаются размеры клетки;
  2. Цитоплазматический матрикс увеличивается в количестве;
  3. Окраска клетки меняется с голубой (базофильной) на розоватую, розовую и затем красную вследствие уменьшения содержания в клетке РНК и ДНК и накопления гемоглобина;
  4. Уменьшаются размеры ядра клетки, причём в конце созревания оно не только уменьшается в размерах, но и становится характерно «сморщенным», а затем выталкивается из клетки, которая лишается ядра на стадии ретикулоцита;
  5. У незрелых клеток эритроидного ряда ядро содержит открытый, рыхло упакованный хроматин, в процессе созревания хроматин становится всё более плотно упакованным, конденсированным [5] .

Регуляция эритропоэза [ править | править код ]

Продукция эритроцитов, то есть интенсивность процессов эритропоэза, регулируется петлёй отрицательной обратной связи при участии гормона эритропоэтина. Эта система саморегулируется таким образом, чтобы в нормальном, здоровом состоянии организма скорость производства костным мозгом новых эритроцитов приблизительно соответствовала скорости разрушения «пожилых» (уже деформировавшихся от старости и потому захваченных и разрушенных клетками ретикулоэндотелиальной системы и в частности макрофагами селезёнки), то есть чтобы уровень гемоглобина и эритроцитов в крови оставался приблизительно постоянным. А уровень этот поддерживается таким, чтобы количество гемоглобина и эритроцитов было достаточным для обеспечения адекватного снабжения тканей (и в частности печени и почек) кислородом, но при этом чтобы это количество эритроцитов также не было чрезмерным, вызывающим чрезмерное «сгущение крови», повышение её вязкости, агглютинацию («склеивание») эритроцитов в кровяном русле, чрезмерное увеличение объёма крови и повышение артериального давления, развитие тромбозов, инфарктов или инсультов. Эритропоэтин выделяется в печени и почках в ответ на пониженное содержание в их тканях кислорода (то есть на ухудшение кислородного снабжения ткани печени или почек, чем бы оно ни было вызвано — анемией, спазмом сосудов почек или печени, недостаточным содержанием кислорода в воздухе, заболеванием лёгких или сердца, сосудов — не суть важно, механизм сработает). Кроме того, циркулирующий в крови эритропоэтин связывается циркулирующими эритроцитами, поэтому низкое содержание эритроцитов в крови приводит к повышению количества свободного (не связанного с эритроцитами) эритропоэтина, что приводит к стимуляции производства эритроцитов костным мозгом и к повышению их содержания в крови. Вследствие этого кислородное снабжение печени и почек улучшается (так как эритроцитов и гемоглобина в крови стало больше), снижается продукция ими эритропоэтина, а уровень свободного (несвязанного) эритропоэтина снижается из-за связывания увеличившимся количеством эритроцитов. Таким образом система предотвращает чрезмерное нарастание количества эритроцитов в ответ на стимуляцию и негативные последствия этого чрезмерного нарастания, и самобалансируется.

Кроме того, как продукция эритропоэтина почками и печенью, так и продукция красных кровяных клеток костным мозгом находятся под контролем и ряда других гормонов. В частности, стрессовый гормон кортизол также способен как увеличивать продукцию эритропоэтина почками и печенью, так и непосредственно стимулировать эритроцитарный росток костного мозга. Физиологическое значение этого заключается в том, что для реализации стрессовых реакций по типу «бей или беги» повышенная продукция эритроцитов и улучшение кислородного снабжения тканей (особенно мышц, мозга, миокарда) предоставляет преимущество. Значение при патологии — в том, что при недостаточности коры надпочечников (болезни Аддисона) нередко отмечается анемия, а при гиперкортицизме (болезни Кушинга) — нередко чрезмерный эритроцитоз.

Также на продукцию эритроцитов положительно влияют половые гормоны, особенно мужские (поэтому содержание гемоглобина и эритроцитов у мужчин выше, чем у женщин), гормоны щитовидной железы, соматотропин, инсулин. Физиологическое значение этого заключается в том, что в период роста и созревания организма ребёнка или подростка, параллельно общему росту, увеличивается и интенсивность процессов эритропоэза. Значение при патологии — в том, что при ряде эндокринных недостаточностей, например, сахарном диабете, гипотиреозе, нередко наблюдается умеренно выраженная анемия, а при состояниях, сопровождающихся гиперпродукцией гормонов (например, тиреотоксикозе), иногда бывает умеренный эритроцитоз.

Последние исследования показывают также, что пептидный гормон гепсидин может играть важную роль в регуляции продукции гемоглобина и тем самым в регуляции эритропоэза. Гепсидин производится печенью и регулирует все аспекты обмена железа — скорость абсорбции железа в желудочно-кишечном тракте, скорость высвобождения железа из клеток ретикулоэндотелиальной системы, в частности макрофагов костного мозга, скорость продукции железосвязывающих белков печенью, экскрецию железа почками. А поскольку для того, чтобы эритроциты были способны производить гемоглобин, макрофаги костного мозга должны их снабдить высвобождаемым из них железом, то гепсидин, тем самым, регулирует и скорость образования гемоглобина. Регулятором для уровня гепсидина является содержание железа в печени и в крови.

Утрата функции эритропоэтинового рецептора или белка JAK2 в мышиных клетках вызывает нарушение эритропоэза, поэтому продукция красных кровяных клеток у эмбриона мыши нарушается и вместе с этим нарушается нормальный рост и развитие эмбриона. И напротив, если отключить механизм отрицательной обратной связи (супрессоры цитокиновых сигналов) и позволить неограниченную продукцию эритропоэтина, это вызывает у мышей гигантизм (развитие необычно крупных мышек). Нарушения в экспрессии гепсидина в ту или другую сторону приводят к мышкам с врождённой тяжёлой железодефицитной анемией или, наоборот, с гемосидерозом (болезнью накопления железа) [6] [7] .

  • Физиология
  • История физиологии
  • Методы физиологии

Гемопоэз

Гемопоэз — процесс образования форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз) и тромбоцитов (тромбоцитопоэз).

У взрослых животных он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию. Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов. В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Эритропоэз проходит в миелоидной ткани костного мозга. Средняя продолжительность жизни эритроцитов составляет 100-120 сут. В сутки образуется до 2 * 10 11 клеток.

Читайте также:  Самые безопасные пауки

Рис. Регуляция эритропоэза

Регуляция эритропоэза осуществляется эритропоэтинами, образующимися в почках. Эритропоэз стимулируется мужскими половыми гормонами, тироксином и катехоламинами. Для образования эритроцитов нужны витамин В12 и фолиевая кислота, а также внутренний фактор кроветворения, который образуется в слизистой оболочке желудка, железо, медь, кобальт, витамины. В нормальных условиях продуцируется небольшое количество эритропоэтина, который достигает клеток красного мозга и взаимодействует с рецепторами эритропоэтина, в результате чего изменяется концентрация в клетке цАМФ, что повышает синтез гемоглобина. Стимуляция эритропоэза осуществляется также под влиянием таких неспецифических факторов, как АКТГ, глюкокортикоиды, катехоламины, андрогены, а также при активации симпатической нервной системы.

Разрушаются эритроциты путем внутриклеточного гемолиза мононуклеарами в селезенке и внутри сосудов.

Лейкопоэз происходит в красном костном мозге и лимфоидной ткани. Этот процесс стимулируется специфическими ростовыми факторами, или лейкопоэтинами, которые воздействуют на определенные предшественники. Важную роль в лейкопоэзе играют интерлейкины, которые усиливают рост базофилов и эозинофилов. Лейкопоэз также стимулируется продуктами распада лейкоцитов и тканей, микроорганизмами, токсинами.

Тромбоцитопоэз регулируется тромбоцитопоэтинами, образующимися в костном мозге, селезенке, печени, а также интерлейкинами. Благодаря тромбоцитопоэтинам регулируется оптимальное соотношение между процессами разрушения и образования кровяных пластинок.

Гемоцитопоэз и его регуляция

Гемоцитопоэз (гемопоэз, кроветворение) – совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Современные представления о гемопоэзе, включающие пути дифференциации полипотентных стволовых гемопоэтических клеток, важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации полипотентных стволовых клеток в зрелые клетки крови представлены на рис. 1.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения. ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам. Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 • 10 11 эритроцитов, 0,45 • 10 11 нейтрофилов, 0,01 • 10 11 моноцитов, 1,75 • 10 11 тромбоцитов. У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.

Рис. 1. Иерархическая модель гемоцитопоэза, включающая пути дифференциации (ПСГК) и важнейшие цитокины и гормоны, регулирующие процессы самообновления, пролиферации и дифференциации ПСГК в зрелые клетки крови: А — миелоидная стволовая клетка (КОЕ-ГЭММ), являющаяся предшественницей моноцитов, гранулоцитов, тромбоцитов и эротроцитов; Б — лимфоидная стволовая клетка-предшественница лимфоцитов

Подсчитано, что каждый день в организме человека теряется (2-5) • 10 11 клеток крови, которые замешаются на равное количество новых. Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни. В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в. Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК). Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови (см. рис. 1.) и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей. По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК. Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени). Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови. Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток. В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов). В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки. Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг. С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.). В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку. Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

Читайте также:  Вши фото в волосах у взрослого лечение

В красном костном мозге из перечисленных колониеобразующих клеток через ряд промежуточных стадий образуются регикулоциты (предшественники эритроцитов), мегакариоциты (от которых «отшнуровываются» тромбоцит!,i), гранулоциты (нейтрофилы, эозинофилы, базофилы), моноциты и В-лимфоциты. В тимусе, селезенке, лимфатических узлах и лимфоидной ткани, ассоциированной с кишечником (миндалины, аденоиды, пейеровы бляшки) происходит образование и дифференцирование Т-лимфоцитов и плазматических клеток из В-лимфоцитов. В селезенке также идут процессы захвата и разрушения клеток крови (прежде всего эритроцитов и тромбоцитов) и их фрагментов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга. ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна. Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками. Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

Регуляция гемопоэза — это изменение интенсивности гемопоэза в соответствии с меняющимися потребностями организма, осуществляемое посредством его ускорения или торможения.

Для полноценного гемоцитопоэза необходимо:

  • поступление сигнальной информации (цитокинов, гормонов, нейромедиаторов) о состоянии клеточного состава крови и ее функций;
  • обеспечение этого процесса достаточным количеством энергетических и пластических веществ, витаминов, минеральных макро- и микроэлементов, воды. Регуляция гемопоэза основана на том, что все типы взрослых клеток крови образуются из гемопоэтических стволовых клеток костного мозга, направление дифференцировки которых в различные типы клеток крови определяется действием на их рецепторы локальных и системных сигнальных молекул.

Роль внешней сигнальной информации для пролиферации и апоптоза СГК выполняют цитокины, гормоны, нейромедиаторы и факторы микроокружения. Среди них выделяют раннедействующие и позднедействующие, мультилинейные и монолинейные факторы. Одни из них стимулируют гемопоэз, другие — тормозят. Роль внутренних регуляторов плюрипотентности или дифференцировки СК играют транскрипционные факторы, действующие в ядрах клеток.

Специфичность влияния на стволовые кроветворные клетки обычно достигается действием на них не одного, а сразу нескольких факторов. Эффекты действия факторов достигаются посредством стимуляции ими специфических рецепторов кроветворных клеток, набор которых изменяется на каждом этапе дифференцировки этих клеток.

Раннедействующими ростовыми факторами, способствующими выживанию, росту, созреванию и превращению стволовых и других кроветворных клеток-предшественниц нескольких линий клеток крови, являются фактор стволовых клеток (ФСК), ИЛ-3, ИЛ-6, ГМ-КСФ, ИЛ-1, ИЛ-4, ИЛ-11, ЛИФ.

Развитие и дифференцировку клеток крови преимущественно одной линии предопределяют позднедействующие ростовые факторы — Г-КСФ, М-КСФ, ЭПО, ТПО, ИЛ-5.

Факторами, ингибирующими пролиферацию гемопоэтических клеток, являются трансформирующий ростовой фактор (TRFβ), макрофагальный воспалительный белок (МIР-1β), фактор некроза опухолей (ФНОа), интерфероны (ИФН(3, ИФНу), лактоферрин.

Действие цитокинов, факторов роста, гормонов (эритропоэтина, гормона роста и др.) на клетки гемоноэтических органов чаще реализуется всего через стимуляцию 1-TMS- и реже 7-ТМS-рецепторов плазматических мембран и реже — через стимуляцию внутриклеточных рецепторов (глюкокортикоиды, Т3иТ4).

Для нормального функционирования кроветворная ткань нуждается в поступлении ряда витаминов и микроэлементов.

Витамины

Витамин B12 и фолиевая кислота нужны для синтеза нуклеопротеинов, созревания и деления клеток. Для защиты от разрушения в желудке и всасывания в тонком кишечнике витамину В12 нужен гликопротеин (внутренний фактор Кастла), который вырабатывается париетальными клетками желудка. При дефиците этих витаминов в пище или отсутствии внутреннего фактора Кастла (например, после хирургического удаления желудка) у человека развивается гиперхромная макроцитарная анемия, гиперсегментация нейтрофилов и снижение их продукции, а также тромбоцитопения. Витамин В6 нужен для синтеза тема. Витамин С способствует метаболизму (родиевой кислоты и участвует в обмене железа. Витамины Е и РР защищают мембрану эритроцита и гем от окисления. Витамин В2 нужен для стимуляции окислительно-восстановительных процессов в клетках костного мозга.

Микроэлементы

Железо, медь, кобальт нужны для синтеза гема и гемоглобина, созревания эритробластов и их дифференцирования, стимуляции синтеза эритропоэтина в почках и печени, выполнения газотранспортной функции эритроцитов. В условиях их дефицита в организме развивается гипохромная, микроцитарная анемия. Селен усиливает антиоксидантное действие витаминов Е и РР, а цинк необходим для нормального функционирования фермента карбоангидразы.

Эритропоэз — процесс образования эритроцитов в костном мозге. Первой клеткой эритроидного ряда, образующейся из колониеобразующей клетки эритроцитарной (КОК-Э) — клетки-предшественницы эритроидного ряда, является проэритробласт, из которого в ходе 4—5 последующих удвоений и созревания образуется 16—32 зрелых эритроцита.

Схема процесса: 1 проэритробласт (удвоение) => два базофильных эритробласта I порядка => 4 базофильных эритробласта II порядка => 8 полихроматофильных эритробластов I порядка => 16 полихроматофильных эритробластов II порядка => 32 полихроматофильных нормобласта =>
32 оксифильных нормобласта => денуклеация нормобластов => 32 ретикулоцита => 32 эритроцита.
Эритропоэз до формирования ретикулоцита занимает 5 дней.

Эритропоэз у человека и животных (от проэритробласта до ретикулоцита) протекает в эритробластических островках костного мозга, которых в норме содержится до 137 на 1 мг ткани костного мозга. Макрофаги эритроцитарных островков играют основную роль в физиологии эритроидных клеток, влияя на их пролиферацию и созревание.

Макрофаги фагоцитируют вытолкнутые из нормобластов ядра, обеспечивают эритробласты ферритином и пластическими веществами, секретируют эритропоэтин и гликозаминогликаны, последние повышают концентрацию ростковых факторов в островках. Эти благоприятные условия для развития эрит-робластов макрофаги создают благодаря наличию рецепторов к эритроидным клеткам-предшественницам.

Из костного мозга ретикулоциты выходят в кровь и в течение суток созревают в эритроциты. По количеству ретикулоцитов в крови судят об эритроцитарной продукции костного мозга и интенсивности эритропоэза. У человека их количество составляет 5— 10%о. За сутки в 1 мкл крови поступает 60—80 тыс. эритроцитов.

В 1 мкл крови у мужчин содержится 5,21 (4,52—5,9) млн, а у женщин — 4,6 (4,1—5,1) млн эритроцитов.

Уменьшение количества эритроцитов в единице объема крови называется анемией, увеличение — эритроцитозом.

Последний может носить физиологический, приспособленный для организма человека характер (например, при подъеме человека в горы, на высоту более 3000 м над уровнем моря).

Общий анализ крови в норме

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Животные
0 комментариев
No Image Животные
0 комментариев
No Image Животные
0 комментариев
No Image Животные
0 комментариев
Adblock detector